

Dragan Gašević @dgasevic

> November 27th, 2024 ICCE'24 Manila, Philippines

GRAIL F

Artificial intelligence

Artificial intelligence will not go away

Source: https://bit.ly/47NbA7D

Over 80% of jobs, especially writing and IT, are predicted have at least 19% exposure to generative AI

46% productivity increase in software engineers while maintaining code quality by using AI

Productivity in **problem solving support** increased by 35% for novice, but not for experienced workers

Generative AI does not have inherent mechanisms to **distinguish facts from falsehoods**

Developing adaptive learners for the age of Al

nature human behaviour

Perspective

https://doi.org/10.1038/s41562-024-02004-5

Promises and challenges of generative artificial intelligence for human learning

Received: 25 February 2024 Accepted: 3 September 2024 Lixiang Yan^{®1}, Samuel Greiff^{®2,3,4}, Ziwen Teuber^{®2} & Dragan Gašević^{®1}

Published online: 22 October 2024 Check for updates

Generative artificial intelligence (GenAl) holds the potential to transform the delivery, cultivation and evaluation of human learning. Here the authors examine the integration of GenAl as a tool for human learning, addressing its promises and challenges from a holistic viewpoint that integrates insights from learning sciences, educational technology and human-computer interaction. GenAI promises to enhance learning experiences by scaling personalized support, diversifying learning materials, enabling timely feedback and innovating assessment methods. However, it also presents critical issues such as model imperfections, ethical dilemmas and the disruption of traditional assessments. Thus, cultivating Al literacy and adaptive skills is imperative for facilitating informed engagement with GenAl technologies. Rigorous research across learning contexts is essential to evaluate GenAl's effect on human cognition, metacognition and creativity. Humanity must learn with and about GenAI, ensuring that it becomes a powerful ally in the pursuit of knowledge and innovation, rather than a crutch that undermines our intellectual abilities.

Human learning is a journey that shapes minds, fosters innovation and builds the foundations of society. Beyond merely acquiring knowledge and skills. learning is a path towards fostering critical thinking, creativity, collaboration and social cohesion. By nurturing the ability to question, analyse and innovate, learning empowers individuals to navigate terms), have shown promise in automating various learning tasks², complex challenges and contribute to societal progress. Although education encompasses formalized systems that structure learning processes, learning represents the dynamic and personal process that occurs within this framework (see Box 1 for key definitions of human learning concepts).

The history of human learning presents a narrative of continuous evolution and adaptation to technological breakthroughs. For example, the printing press democratized access to knowledge and opened the opportunity of learning to many, whereas the Internet and digital technologies transformed information dissemination and collaborative learning across time and space. In this continuum of innovation, recent advancements in artificial intelligence (AI) present

another transformative opportunity to rethink learning processes and educational methodologies1.

Generative AI (GenAI) technologies, such as large language models (LLMs) and diffusion models (see Box 2 for key definitions of AI delivering feedback on human efficacy³, outperforming average students in reflective writing⁴, innovating conversational assessments⁵, creating dynamic learning resources6 and supporting multimedia learning⁷. However, these technologies also present challenges and ethical considerations that could outweigh their benefits^{2,8}. One major concern is the digital divide, where unequal access to these powerful technologies can exacerbate existing inequalities in learning opportunities⁹. Additionally, over-reliance on GenAI may negatively affect learners' agency, critical thinking and creativity, warranting caution¹⁰.

Consequently, it is essential to balance technological advancement and human-centred values in learning. The aim of this Perspective

¹Faculty of Information Technology, Monash University, Melbourne, Victoria, Australia, ²Department of Behavioral and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg. ³Department of Educational Psychology, Goethe-University Frankfurt, Frankfurt, Germany. ⁴Present address: Centre for International Student Assessment (ZIB) & School of Social Sciences and Technology, Technical University of Munich, Munich, Germany, Re-mail: samuel.greiff@tum.de; dragan.gasevic@monash.edu

Nature Human Behaviour | Volume 8 | October 2024 | 1839-1850

Towards high human and AI-empowered skills

Inspired by, but different conceptualization from

Cukurova, M. (2024). The interplay of learning, analytics, and artificial intelligence in education. *British Journal of Educational Technology*, in press. Shneiderman, B. (2022). *Human-centered artificial intelligence*. Oxford University Press

Challenge

Learners already have profound limitations in SRL abilities

Today's talk

How do we develop self-regulated learners for the age of AI?

Key takeaway #1

No free lunch for adaptive learners!

Difficult to develop combined human and AI-empowered skills without human skills first

Key takeaway #2

Lazy metacognition may emerge with unscaffolded use of generative AI

Fan, Y., Tang, L., Le, H., Shen, K., Zhao, S., Zhao, Y., Shen, Y., Li, X., Gašević, D. (2024). Beware of metacognitive laziness: Effects of generative artificial intelligence on learning motivation, processes, and performance. *British Journal of Educational Technology*, in press.

Key takeaway #3

Longitudinal studies are *urgently* needed in combining scaffolds and AI supports

FOUNDATIONS – IMPACT – DIRECTION – FINAL REMARKS

Towards adaptive learners

How do we currently prepare self-regulated learners for the age of AI?

Winne, P. H., & Hadwin, A. F. (1998). Studying as self-regulated learning. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), *Metacognition in educational theory and practice* (pp. 277–304). Lawrence Erlbaum Associates Publishers.

Metacognition sits at the heart of self-regulated learning

COLAM

Winne, P. H., & Hadwin, A. F. (1998). Studying as self-regulated learning. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), *Metacognition in educational theory and practice* (pp. 277–304). Lawrence Erlbaum Associates Publishers.

Self-regulated learning – control

Learners construct knowledge through *learning strategies*

Winne, P. H. (2006). How software technologies can improve research on learning and bolster school reform. Educational Psychologist, 41(1), 5–17.

Strengthening the Student Toolbox

Study Strategies to Boost Learning

BY JOHN DUNLOSKY

t's the night before her biology exam, and the high school student has just begunt to study. She takes out her highlighter and reads her textbook, marking it up as she goes along. She rereads sentences that seem most important and stays up most of the night, just hoping to get a good enough grasp of the material to do well on the exam. These are study strategies that she may have learned from her friends or her teachers or that she simply took to on her own. She is not unusual in this regard; many students rely on strategies such as highlighting, rereading, and cramming the night before an exam.

Quite often, students believe these relatively ineffective strate-

John Dunlosky is a professor of psychology and the director of experimental training at Kent Stale University. His research focuses on self-regulated learning and how it can be used to improve student achievement across the lifespan.

gies are actually the most effective,¹ and at least on the surface they do seem sound, perhaps because, even after pulling an allnighter, students manage to squeak by on exams. Unfortunately, in a recent review of the research, my colleagues and I found that these strategies are not that effective,² especially if students want to retain their learning and understanding of content well after the exam is over—obviously, an important educational goal.

So, why aren't students learning about the best strategies? I can only speculate, but several reasons seem likely. Curricula are developed to highlight the content that teachers should teach, so the focus is on providing content and not on training students how to effectively acquire it. Put differently, the emphasis is on *what* students need to learn, whereas little emphasis—if any—is placed on training students *how* they should go about learning the content and what skills will promote efficient studying to support robust learning. Nevertheless, teaching students *how* to learn is as important as teaching them content, because acquir-

Learning strategies

Effectiveness of Techniques Reviewed Table ' Extent and Conditions of Effectiveness Technique Very effective under a wide array of situations Practice testing Very effective under a wide array of situations Distributed practice Promising for math and concept learning, Interleaved practice but needs more research Elaborative interrogation Promising, but needs more research Self-explanation Promising, but needs more research Rereading Distributed rereading can be helpful, but time could be better spent using another strategy Not particularly helpful, but can be used as a first Highlighting and underlining step toward further study Summarization Helpful only with training on how to summarize Somewhat helpful for learning languages, but Keyword mnemonic benefits are short-lived Imagery for text Benefits limited to imagery-friendly text, and needs more research

12 AMERICAN EDUCATOR | FALL 2013

Dunlosky, J. (2013). Strengthening the Student Toolbox: Study Strategies to Boost Learning. American Educator, 37(3), 12-21.

Self-regulated learning – control

https://bit.ly/canva-flashcards

https://bit.ly/3star-highlight

Learners have a limited repertoire of learning strategies

Bjork, R. A., & Bjork, E. L. (2020). Desirable difficulties in theory and practice. Journal of Applied research in Memory and Cognition, 9(4), 475.

Learners are agents who use own judgements to make decisions

Tauber, S. K. U., Dunlosky, J., & Rawson, K. A. (2015). The influence of retrieval practice versus delayed judgments of learning on memory: Resolving a memory-metamemory paradox. *Experimental psychology*, 62(4), 254.

Learners are *highly inaccurate* about their judgements of learning

Prinz, A., Golke, S., & Wittwer, J. (2020). To what extent do situation-model-approach interventions improve relative metacomprehension accuracy? Metaanalytic insights. *Educational Psychology Review*, 32(4), 917-949.

Processing fluency: illusion of truth effect

Reber, R., & Schwarz, N. (1999). Effects of perceptual fluency on judgments of truth. *Consciousness and Cognition*, 8(3), 338-342.

Processing fluency: selection of strategy

Alter, A. L., Oppenheimer, D. M., Epley, N., & Eyre, R. N. (2007). Overcoming intuition: metacognitive difficulty activates analytic reasoning. *Journal of Experimental Psychology: General*, 136(4), 569.

Information problem solving

Metacognition critical for seeking, selecting, and using information

Brand-Gruwel, S., Wopereis, I., & Walraven, A. (2009). A descriptive model of information problem solving while using internet. *Computers & Education*, 53(4), 1207-1217.

Information problem solving

Learners use unreliable sources and suboptimal search strategies

Judd, T., & Kennedy, G. (2011). Expediency-based practice? Medical students' reliance on Google and Wikipedia for biomedical inquiries. British Journal of Educational Technology, 42 (2), 351-360.

Information problem solving

Sensemaking paradox

https://www.lisedunetwork.com/what-information-seeking/

Butcher, K. R., & Sumner, R. (2011). Self-Directed Learning and the Sensemaking Paradox. Human–Computer Interaction, 26(1-2), 123-159.

Risk #1

Existing adaptive learning systems

Risk #2

Risko, E. F., & Gilbert, S. J. (2016). Cognitive offloading. *Trends in Cognitive Sciences*, 20(9), 676-688.

FOUNDATIONS – IMPACT – DIRECTION – FINAL REMARKS

Direction

Using data to understand and enhance self-regulated learning for the age of AI

Gašević, D., Tsai, Y-S., Dawson, S., & Pardo, A. (2019). How do we start? An approach to learning analytics adoption in higher education. *International Journal of Information and Learning Technology*, 36(4), 342-353.

FLoRA

http://floraproject.org

Mapping trace data to processes

Fan, Y., van der Graaf, J., Lim, L., Raković, M., Singh, S., Kilgour, J., ... & Gašević, D. (2022). Towards investigating the validity of measurement of self-regulated learning based on trace data. *Metacognition and Learning*, 17(3), 949 - 987.

Framework

Hybrid human-AI regulation

Hybrid human-Al regulation

Degrees of hybrid regulation	AI regulation	Human regulation	Function of dashboard
AI regulation	AI monitors and adjusts extensively	Aware of AI regulation	Raising awareness of AI regulation
Co- regulation	AI monitors and adjusts in small steps	Understanding how AI monitors and controls	Showing AI monitoring and modelling AI control
Shared- regulation	AI monitors and proposes control actions to the learner	Understanding monitoring and executing control	Showing monitoring and scaffolding learners' control
Self- regulation	Observing regulation	Monitoring and self- initiation of control	Showing learners' regulation to support their understanding

Hybrid human-Al regulation

Degrees of hybrid regulation	AI regulation	Human regulation	Function of dashboard
AI regulation	AI monitors and adjusts extensively	Aware of AI regulation	Raising awareness of AI regulation
Co- regulation	AI monitors and adjusts in small steps	Understanding how AI monitors and controls	Showing AI monitoring and modelling AI control
Shared- regulation	AI monitors and proposes control actions to the learner	Understanding monitoring and executing control	Showing monitoring and scaffolding learners' control
Self- regulation	Observing regulation	Monitoring and self- initiation of control	Showing learners' regulation to support their understanding

Hybrid human-AI regulation

Degrees of hybrid regulation	AI regulation	Human regulation	Function of dashboard
AI regulation	AI monitors and adjusts extensively	Aware of AI regulation	Raising awareness of AI regulation
Co- regulation	AI monitors and adjusts in small steps	Understanding how AI monitors and controls	Showing AI monitoring and modelling AI control
Shared- regulation	AI monitors and proposes control actions to the learner	Understanding monitoring and executing control	Showing monitoring and scaffolding learners' control
Self- regulation	Observing regulation	Monitoring and self- initiation of control	Showing learners' regulation to support their understanding

Framework

Hybrid human-AI regulation

Framework

Risko, E. F., & Gilbert, S. J. (2016). Cognitive offloading. *Trends in cognitive sciences*, 20(9), 676-688.

How can Al-powered scaffolds influence learning strategies?

Al-powered scaffolding tool

Al-powered scaffolds and learning strategies

Moderate association between scaffolding and learning strategy

Srivastava, N., Fan, Y., Rakovic, M., Singh, S., Jovanovic, J., van der Graaf, J., ... & Gasevic, D. (2022). Effects of Internal and External Conditions on Strategies of Selfregulated Learning: A Learning Analytics Study. In *Proceedings of the 12th International Learning Analytics and Knowledge Conference* (pp. 392-403).

Towards metacognitive onloading

Towards human and AI-empowered skills

Integrating scaffolds with AI support

Al-powered scaffolds and learning strategies

FLoRA My courses Site administration

×

1.1 What is artificial intellig...

1.2 How does AI work?

1.3 Al in practice

1.4 Difference between AI ...

1.5 The role of the human ...

1.6 Are Al machines smart...

1.7 The current limits and ...

2.1 Technology changing ...

2.2 AI and disease detecti...

2.3 AI and mental illness

2.4 Patient's perspectives

2.5 Doctor's perspectives

2.6 AI accuracy in medicine

2.7 AI and data security in...

2.8 How does hospitals in ... https://www.floraengine.org/moodle/my/courses.php 3: Al in Medicine C / 2.4 Patient's perspectives

PAGE2.4 Patient's perspectives

Page Settings More-

Researchers at a US university found that many patients do not trust AI syster reasons. For example, an AI doctor (robot) may sometimes ask the patient to make her or him uncomfortable. Also, some patients may feel that AI system

Ag - Edit mode

Х

⊵⊘

۲

≣

0

Instruction Panel

This will help you structure your essay effectively and cover all necessary points. Remember, planning your approach and being mindful of the time can enhance your performance. You're in control of your learning, and these strategies will empower you to produce a high-quality essay. Keep up the good work! 10:49:46

I see that you're aware of the time and tools available, which is great! However, it's important to also understand the task instructions and rubric. Your essay should discuss AI's concept, current use, and future integration in daily life and medicine. Use the reading material to gather information and examples. Start by defining AI, then discuss its current and potential future applications in medicine. Remember to write in your own words and include your own thoughts. You're doing well, just focus on incorporating the reading material into your essay. You've got this! 10:56:51

Al-powered scaffolds and learning strategies

FLoRA My courses Site administration

🗘 🔎 Ag - Edit mode 🔵

×

1.1 What is artificial intellig...

1.2 How does Al work?

1.3 Al in practice

1.4 Difference between AI ...

1.5 The role of the human ...

1.6 Are AI machines smart...

1.7 The current limits and ...

2.1 Technology changing ...

2.2 AI and disease detecti...

2.3 AI and mental illness

2.4 Patient's perspectives

2.5 Doctor's perspectives

2.6 Al accuracy in medicine

2.7 AI and data security in...

2.8 How does hospitals in ... https://www.floraengine.org/moodle/my/courses.php 3: Al in Medicine C / 2.4 Patient's perspectives

2.4 Patient's perse

Page Settings More-

Researchers at a US uni reasons. For example, a make her or him uncor I see that you're aware of the time and tools available, which is great! However, it's important to also understand the task instructions and rubric. Your essay should discuss AI's concept, current use, and future integration in daily life and medicine. Use the reading material to gather information and examples. Start by defining AI, then discuss its current and potential future applications in medicine. Remember to write in your own words and include your own thoughts. You're doing well, just focus on incorporating the reading material into your essay. You've got this!

10:56:51

Q

⊘

Towards high human and AI-empowered skills

Li, T., Nath, D., Cheng, Y., Fan, Y., Li, X., Raković, M., Khosravi, H., Swiecki, Z., Tsai, Y-S., Gašević, D. (2025). Turning real-time analytics into adaptive scaffolds for self-regulated learning using generative artificial intelligence. *Proceedings of the 15th International Conference on Learning Analytics and Knowledge* (in press).

Monitoring

What are effects of gen Al on monitoring?

Effects of gen Al on processing fluency

https://bit.ly/nr-genai-hallucinate

Gen Al can worsen monitoring

Metacognitive offloading

Kabir, S., Udo-Imeh, D. N., Kou, B., & Zhang, T. (2024). Is Stack Overflow obsolete? An empirical study of the characteristics of ChatGPT answers to stack overflow questions. In *Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems* (Article # 935, pp. 1-17).

Inadvertent deception of ChatGPT

Inaccurate and verbose, but users prefer ChatGPT responses

Processing fluency – illusion of truth effect

Kabir, S., Udo-Imeh, D. N., Kou, B., & Zhang, T. (2024). Is Stack Overflow obsolete? An empirical study of the characteristics of ChatGPT answers to stack overflow questions. In *Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems* (Article # 935, pp. 1-17).

Towards high human and AI-empowered skills

cognitive offloading

Al support:

- aims to improve performance
- has a fit for the task
- knowledge of AI tool

Al-powered scaffolds

http://floraproject.org

Al-powered scaffolds

Towards metacognitive onloading

Increased monitoring accuracy with AI scaffolds for writing

Tang, L., Shen, K., Le, H., Shen, Y., Tan, S., Zhao, S., Juelich, T., Li, X., Gašević, D., Fan, Y. (2024). Facilitating learners' self-assessment during formative writing tasks using writing analytics toolkit. *Journal of Computer Assisted Learning*, in press.

Towards metacognitive onloading

Challenge

Al-powered scaffolds may have inadvertent side effects on learning

External locus of control is increased (i.e., learners blame AI-powered scaffolds for any issues)

Tang, L., Shen, K., Le, H., Shen, Y., Tan, S., Zhao, S., Juelich, T., Li, X., Gašević, D., Fan, Y. (2024). Facilitating learners' self-assessment during formative writing tasks using writing analytics toolkit. *Journal of Computer Assisted Learning*, in press.

AI scaffolds and monitoring

What is long-term effect of *AI scaffolds* as shared regulation on monitoring?

Al support and monitoring

Al support and monitoring

C L A M

Longitudinal impact on monitoring

Al support and monitoring

Benefits deteriorate when Al support is removed

Al support and monitoring

Benefits deteriorate when Al support is removed

"Generative AI can harm learning"

Bastani, H., Bastani, O., Sungu, A., Ge, H., Kabakcı, Ö., & Mariman, R. (2024). Generative AI can harm learning. Available at SSRN 4895486. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4895486

Long term effects of unscaffolded Al-support

Al support and judgment of learning

Benefits present* when Al support replaced by scaffolds

*But not as high as they are with AI support

Al-support after replaced with scaffolds

Positive, but not novel

Al support and judgment of learning

Combining scaffolds and AI support does not produce additive effects

Towards high human and AI-empowered skills

No additive effect of scaffolds and Al support

Open challenge

How do we develop high human and AI-empowered skills?

Information problem solving

What effect does generative AI have on information problem solving?

ChatGPT in FLoRA

Writing performance

Unsurprisingly writing performance is improved when using ChatGPT

ChatGPT significantly higher essay scores than the other three

Chen, A., Xiang, M., Zhou, J., Jia, J., Shang, J., Li, X., Gašević, Fan, Y. (2025). Unpacking help-seeking processes through multimodal learning analytics: A comparative study of learning facilitated by ChatGPT and human expert. *Computers & Education, 226*, 105198.

Metacognition in information problem solving

Limited monitoring when information provided by generative AI

Chen, A., Xiang, M., Zhou, J., Jia, J., Shang, J., Li, X., Gašević, Fan, Y. (2025). Unpacking help-seeking processes through multimodal learning analytics: A comparative study of learning facilitated by ChatGPT and human expert. *Computers & Education, 226,* 105198.

Towards high human and AI-empowered skills

Ask ChatGPT

Metacognition in information problem solving

Always observed evidence of monitoring of human provided information

Chen, A., Xiang, M., Zhou, J., Jia, J., Shang, J., Li, X., Gašević, Fan, Y. (2025). Unpacking help-seeking processes through multimodal learning analytics: A comparative study of learning facilitated by ChatGPT and human expert. *Computers & Education, 226,* 105198.

Towards high human and AI-empowered skills

Ask Teacher

Metacognitive engagement

What are long term implications of limited monitoring?

Unreliable information produced by GenAI

Fan, Y., Tang, L., Le, H., Shen, K., Zhao, S., Zhao, Y., Shen, Y., Li, X., Gašević, D. (2024). Beware of metacognitive laziness: Effects of generative artificial intelligence on learning motivation, processes, and performance. *British Journal of Educational Technology*, in press.

Long term effects of unscaffolded Al-support

Metacognitive laziness

Generative AI Can Harm Learning

Hamsa Bastani,^{1*} Osbert Bastani,^{2*} Alp Sungu,^{1*†} Haosen Ge,³ Özge Kabakcı,⁴ Rei Mariman

¹Operations, Information and Decisions, University of Pennsylvania ²Computer and Information Science, University of Pennsylvania ³Wharton AI & Analytics, University of Pennsylvania ⁴Budapest British International School

Bastani, H., Bastani, O., Sungu, A., Ge, H., Kabakcı, Ö., & Mariman, R. (2024). Generative AI can harm learning. Available at SSRN 4895486. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4895486

Metacognitive laziness

Contents lists available at ScienceDirect

Computers in Human Behavior

journal homepage: www.elsevier.com/locate/comphumbeh

Check for updates

Cognitive ease at a cost: LLMs reduce mental effort but compromise depth in student scientific inquiry

Matthias Stadler^{a,*}, Maria Bannert^b, Michael Sailer^c

^a Institute of Medical Education, LMU University Hospital, LMU Munich, Germany

^b Chair for Teaching and Learning with Digital Media, Technical University of Munich, Germany

Stadler, M., Bannert, M., & Sailer, M. (2024). Cognitive ease at a cost: LLMs reduce mental effort but compromise depth in student scientific inquiry. *Computers in Human Behavior*, 160, 108386.

^c Learning Analytics and Educational Data Mining, University of Augsburg, Augsburg, Germany

FOUNDATIONS – IMPACT – DIRECTION – FINAL REMARKS

Risk #1

Existing adaptive learning systems

Molenaar, I. (2022). The concept of hybrid human-AI regulation: Exemplifying how to support young learners' self-regulated learning. *Computers and Education: Artificial Intelligence, 3,* 100070.

Molenaar, I. (2022). The concept of hybrid human-AI regulation: Exemplifying how to support young learners' self-regulated learning. *Computers and Education: Artificial Intelligence*, *3*, 100070.

Risk #2

Risko, E. F., & Gilbert, S. J. (2016). Cognitive offloading. *Trends in cognitive sciences*, 20(9), 676-688.

Risk #2

Risko, E. F., & Gilbert, S. J. (2016). Cognitive offloading. *Trends in cognitive sciences*, 20(9), 676-688.

Metacognitive engagement

How to minimize risks of Al-empowered skills?

Makes developing human skills worse

Bastani, H., Bastani, O., Sungu, A., Ge, H., Kabakcı, Ö., & Mariman, R. (2024). Generative AI Can Harm Learning. Available at SSRN 4895486. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4895486

Opportunity #2

Metacognitive onloading

Risko, E. F., & Gilbert, S. J. (2016). Cognitive offloading. *Trends in cognitive sciences*, 20(9), 676-688.

Proposition

Combined human and AI-empowered only at high expertise levels

Regulation needed in complex authentic tasks

Opportunity #2

Metacognitive onloading

Risko, E. F., & Gilbert, S. J. (2016). Cognitive offloading. *Trends in cognitive sciences*, 20(9), 676-688.

Opportunity #2

Metacognitive onloading

Risko, E. F., & Gilbert, S. J. (2016). Cognitive offloading. *Trends in cognitive sciences*, 20(9), 676-688.

Proposition

This image is not based on actual data. It is fully hypothesized based on existing research on hybrid human-AI regulation and cognitive offloading.

Proposition

This image is not based on actual data. It is fully hypothesized based on existing research on hybrid human-AI regulation and cognitive offloading.

FOUNDATIONS – IMPACT – DIRECTION – FINAL REMARKS

Tacking open challenges

Al can help enhance SRL, but it can also inhibit it if used carelessly

Tacking open challenges

Effective AI-empowered skills require strong human skills

Opportunity

Human and AI to learn together and from each other

Collins, K. M., Sucholutsky, I., Bhatt, U.,..., Griffiths, T. L. (2024). Building machines that learn and think with people. Nature Human Behavior, 8, 81851–1863.

Dragan Gašević @dgasevic

> November 27th, 2024 ICCE'24 Manila, Philippines

GRAIL F